dDOR Is an EcR Coactivator that Forms a Feed-Forward Loop Connecting Insulin and Ecdysone Signaling
نویسندگان
چکیده
BACKGROUND Mammalian DOR was discovered as a gene whose expression is misregulated in muscle of Zucker diabetic rats. Because no DOR loss-of-function mammalian models are available, we analyze here the in vivo function of DOR by studying flies mutant for Drosophila DOR (dDOR). RESULTS We show that dDOR is a novel coactivator of ecdysone receptor (EcR) that is needed during metamorphosis. dDOR binds EcR and is required for maximal EcR transcriptional activity. In the absence of dDOR, flies display a number of ecdysone loss-of-function phenotypes such as impaired spiracle eversion, impaired salivary gland degradation, and pupal lethality. Furthermore, dDOR knockout flies are lean. We find that dDOR expression is inhibited by insulin signaling via FOXO. CONCLUSION This work uncovers dDOR as a novel EcR coactivator. It also establishes a mutual antagonistic relationship between ecdysone and insulin signaling in the fly fat body. Furthermore, because ecdysone signaling inhibits insulin signaling in the fat body, this also uncovers a feed-forward mechanism whereby ecdysone potentiates its own signaling via dDOR.
منابع مشابه
Cryptocephal, the Drosophila melanogaster ATF4, Is a Specific Coactivator for Ecdysone Receptor Isoform B2
The ecdysone receptor is a heterodimer of two nuclear receptors, the Ecdysone receptor (EcR) and Ultraspiracle (USP). In Drosophila melanogaster, three EcR isoforms share common DNA and ligand-binding domains, but these proteins differ in their most N-terminal regions and, consequently, in the activation domains (AF1s) contained therein. The transcriptional coactivators for these domains, which...
متن کاملThe ecdysone receptor controls the post-critical weight switch to nutrition-independent differentiation in Drosophila wing imaginal discs.
In holometabolous insects, a species-specific size, known as critical weight, needs to be reached for metamorphosis to be initiated in the absence of further nutritional input. Previously, we found that reaching critical weight depends on the insulin-dependent growth of the prothoracic glands (PGs) in Drosophila larvae. Because the PGs produce the molting hormone ecdysone, we hypothesized that ...
متن کاملNew reporter gene assays for detecting natural and synthetic molting hormone agonists using yeasts expressing ecdysone receptors of various insects
Synthetic nonsteroidal ecdysone agonists, a class of insect growth regulators (IGRs), target the ecdysone receptor (EcR), which forms a heterodimer with ultraspiracle (USP) to transactivate ecdysone response genes. These compounds have high binding affinities to the EcR-USP complexes of certain insects and their toxicity is selective for certain taxonomic orders. In the present study, we develo...
متن کاملEcdysone Receptor (EcR) Is Involved in the Transcription of Cell Cycle Genes in the Silkworm
EcR (ecdysone receptor)-mediated ecdysone signaling pathway contributes to regulate the transcription of genes involved in various processes during insect development. In this work, we detected the expression of EcR gene in silkworm ovary-derived BmN4 cells and found that EcR RNAi result in an alteration of cell shape, indicating that EcR may orchestrate cell cycle progression. EcR RNAi and EcR...
متن کاملMolecular Evolution of Ultraspiracle Protein (USP/RXR) in Insects
Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidopte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 20 شماره
صفحات -
تاریخ انتشار 2010